Temporal profile of protein release in myocardial infarction

Piero Montorsi, Marco Villa and Maria Antonietta Dessanai
Institute of Cardiology, University of Milan, Centro Cardiologico Monzino, IRCCS, Milan, Italy

Correspondence: Dr Piero Montorsi, Institute of Cardiology, University of Milan, Centro Cardiologico Monzino, IRCCS, Via Parea 4 – 20138 Milan, Italy.
Tel: +39 02 58002576; fax: +39 02 58002398; e-mail: piero.montorsi@unimi.it

Conflicts of interest: None.

Abstract

Acute myocardial infarction (AMI) is one of the most important cardiovascular diseases in developed countries, where it represents the major cause of death and disability. The diagnosis of “classic” AMI is based on the triad of typical symptoms and changes in the electrocardiogram and in biomarkers. Biomarkers are proteins that are released into the circulation by the damaged myocardial cells. The rate of appearance of these proteins depends on several factors, mainly the rate of their elimination from the blood. Each protein has a specific time course of release in terms of first detection in the blood at concentrations above the upper reference limit, peak plasma concentration, and normalization (Table I). The ideal biomarker should have high sensitivity and specificity, appear early during the course of the disease to allow a rapid diagnosis, remain abnormal for several days to allow a late diagnosis, and be easily assessed by user-friendly assay. This ideal marker has not yet been discovered; however, cardiac troponin is an established marker for both diagnosis and prognosis in acute coronary syndromes. Emerging markers – such as high-sensitivity C-reactive protein (CRP) and brain natriuretic peptide (BNP) – are used as inflammatory indexes to evaluate the extent of the necrosis and to determine prognosis [2,3].

Keywords: Acute myocardial infarction, biomarkers, protein release
Myoglobin

Myoglobin is a small, nonenzymatic heme protein, rapidly released into the circulation from injured myocardial cells. It is detectable in blood as early as 1 h after myocardial injury. The peak of its concentration is reached earlier (approximately 12 h) than that of any other biomarker and tends to normalize within 1 day (Figure 1). Because of its high sensitivity and low specificity for AMI, this marker is particularly suited to excluding AMI at the earliest phase of the disease. As it is not cardiac specific, false-positives may be found in patients with acute or chronic skeletal muscle damage or in patients with chronic renal failure. As for many other biomarkers, a more rapid increase in the plasma concentration of myoglobin is found in patients who achieve a full reperfusion. The early normalization of myoglobin makes this marker particularly indicated for the diagnosis of re-infarction [4,5]; in this event, a “double-peaked” curve is usually detected.

Creatine kinase MB isoenzyme

Creatine kinase MB (CK-MB) is a cytosolic carrier protein for high-energy phosphatase. For several years, the isoenzyme MB has been the marker of AMI used most. The plasma concentration of CK-MB mass starts to increase above the cutoff value between 3 and 12 h after the onset of chest pain. It reaches a peak at 24 h and returns to normal values within 48–72 h (Figure 1). Although it is found in the greatest concentration in cardiac tissue, increased concentrations of CK-MB may be found in renal failure, hypertension, skeletal muscle injury, and other conditions. However, a high concentration of CK-MB may be considered diagnostic for myocardial infarction, especially if combined with the typical increase and decrease in values [6,7].

Troponin

Cardiac troponin (cTn) is one of the biomarkers that have been found to have both diagnostic and prognostic importance in AMI. It is a protein complex that regulates the calcium-modulated interaction between actin and myosin in striated muscle, and is constituted of three subunits: T, C, and I. Troponins I (cTnI) and T (cTnT) are highly specific and sensitive for cardiac injury [8]. A significant increase in cardiac troponin value is defined as a plasma concentration exceeding the 99th percentile of that of a normal reference population [1].

Generally, in AMI the plasma concentration of troponin begins to increase above the cutoff value by 2–4 h after the onset of symptoms, reaching a peak after 24–48 h; concentrations may remain increased for up to 5–10 days (cTnI) or 5–14 days (cTnT) (Figure 1). This long-lasting increase, probably resulting from the continuous release of troponin from the degenerating contractile apparatus of necrotic myocytes, helps in the correct diagnosis of AMI late in the course of the disease. Detection of the typical increase and decrease in concentrations is essential to the diagnosis of AMI, especially if there are coexisting extracardiac conditions that may be associated with high plasma concentrations of troponin (eg, chronic renal failure, trauma, extreme exertion) [9–11].

Measurement of troponins in AMI should be made when the patient is first seen and again 6–9 h later. If AMI is highly suspected but the first measurement does not reveal increased concentrations of troponin, a third

Table 1. First detection, peak, and normalization of protein plasma concentration during acute myocardial infarction.

<table>
<thead>
<tr>
<th>Marker</th>
<th>First detection</th>
<th>Peak</th>
<th>Normalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myoglobin</td>
<td>2 h</td>
<td>4–12 h</td>
<td>24 h</td>
</tr>
<tr>
<td>MB-CK mass</td>
<td>3–12 h</td>
<td>24 h</td>
<td>48–72 h</td>
</tr>
<tr>
<td>Troponin</td>
<td>3–6 h</td>
<td>24–48 h</td>
<td>5–10 days (cTnI)</td>
</tr>
<tr>
<td>C-reactive protein</td>
<td>4–6 h</td>
<td>50 h</td>
<td>NA</td>
</tr>
<tr>
<td>Pentraxin TX3</td>
<td>2–4 h</td>
<td>20–24 h</td>
<td>NA</td>
</tr>
<tr>
<td>Brain natriuretic peptide</td>
<td>early</td>
<td>20 h to 5 days</td>
<td><30 days to NA</td>
</tr>
<tr>
<td>NA, not available.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Profile of release of troponin I (TnI), creatinine kinase MB (CK-MB) and myoglobin in acute myocardial infarction (AMI), upper reference limit (URL), data from De Groot et al [5] and Larue et al [8].
blood sample for measurement of troponin should be drawn after an interval of 12–24 h. Myocardial reinfarction may alter the standard time course of release of troponin, accounting for a renewed increase in, or a progressively increasing, plasma concentration. In such an event, two additional blood sample measurements, 3–6 h apart, are recommended. Recurrent myocardial infarction is diagnosed if there is an increase of at least 20% in the second measurement.

Myocardial reperfusion, whether spontaneous, or achieved pharmacologically with lytic agents or mechanically with percutaneous coronary intervention, may affect the kinetics of release of biomarkers in AMI, including troponin. Patients with ST-segment elevation myocardial infarction who achieve an effective reperfusion have a greater and earlier peak plasma concentration of troponin, followed by a faster return to normal – the so-called “wash-out phenomenon” – compared with those patients having no significant reperfusion (Figure 2) [12,13]. In this event, two blood samples should be collected – at the time of the patient’s admission to hospital, and 90 min later – and the enzyme plasma concentrations compared. The ratio between the concentrations at these two points can be used to discriminate between successful and unsuccessful reperfusion. In general, the greater the ratio (at least 5), the more likely it is that reperfusion has occurred. If reperfusion has indeed occurred, estimation of infarct size using peak biomarker concentration may be not reliable.

C-reactive protein

Inflammation is a factor in all stages of the atherosclerotic disease process, and represents a pathophysiologic link between the formation of plaque and its rupture, which are responsible for AMI. To date, CRP (an acute-phase reactant protein made in the liver) has been the preferred marker for the detection of inflammation and to define prognosis during acute coronary syndromes [14,15]. When AMI occurs, an exponential increase in CRP is observed, starting 4–6 h after the onset of symptoms and reaching a peak about 50 h later (Figure 3). The increase in plasma concentrations of CRP is strictly related to the degree of cardiac damage [14]. High concentrations of CRP, in patients with persistent ST-segment elevation after AMI, is an important negative prognostic factor, in both the short and the long term [16,17].

The specificity of CRP as a marker is very low, because increased concentrations of CRP are detected in several conditions, such as diabetes, obesity, estrogen therapy, hypertension, and smoking.

Pentraxin-3

Pentraxin-3 (PTX3) is related to classic pentraxins (like C-reactive protein CRP or serum amyloid P SAP) but is structurally different. It is made in the liver in response to inflammatory mediators, mainly interleukin-6. It is also produced in large amounts by the heart. PTX3 is detected inside both normal and hypertrophic cardiomyocytes, and is increased in AMI. Its plasma concentration increases rapidly after the onset of symptoms, preceding the increase in CRP concentration, and reaching a peak at 20–24 h after onset of symptoms (Figure 3) [18,19]. In patients with unstable angina, the PTX3 concentration increases to a lower value than in AMI. Accumulating evidence suggests that PTX3, binding with C1q in the same way that CRP and SAP bind to C1q, contributes to the mechanism of increase in tissue damage [20].

Brain natriuretic peptide

Brain natriuretic peptide is 32-amino-acid peptide released in response to ventricular stretch. Its functions...
Proteins released during acute myocardial infarction can provide important diagnostic and prognostic information. Each possesses a specific time course of release. Because of the rapid increase and decrease in its concentration, and its negative predictive value, myoglobin has a role in the exclusion of AMI. Troponin, with its high cardiac specificity, is the preferred marker for myocardial injury and AMI; several blood sample should be obtained at different times along the course of the disease, to enable diagnosis of cases of late AMI, CRP, PTX3 and BNP are emerging biomarkers that have specific indications in the setting of AMI.

References

Refresher corner

Time course of protein release in AMI

Heart Metab. 2009; 43:31–35