Advances in the treatment of heart failure with preserved systolic function

Kristin J. Lyons and Justin A. Ezekowitz, University of Alberta and Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada

Correspondence: Justin A. Ezekowitz, Division of Cardiology, 2C2 WMC, 8440-112 street, Edmonton, Alberta, Canada
Tel: +1 780 4078719, fax: +1 780 4076452
e-mail: jae2@ualberta.ca

Abstract
Heart failure with preserved ejection fraction (HFpEF) comprises 40% of the heart failure (HF) population. The morbidity and mortality of HFpEF is similar to HF with reduced ejection fraction (HFrEF), but unlike this latter population, the prognosis of HFpEF has not changed over the past 30 years. Therapies that are the mainstay of treatment in HFrEF have not been found to be effective in HFpEF, while others have not been fully studied. At present, there are no effective therapies available for the HFpEF population. This paper reviews the current knowledge of HFpEF treatment, as well as the novel therapies that may be coming in the future.

Keywords: Diastolic; drug therapy; heart failure; randomized controlled trials as topic

Introduction
Heart failure (HF) is a common cause of morbidity and mortality with a prevalence of 6–10% in those over 65 years of age [1]. It is a leading cause of acute care hospitalizations and more Medicare dollars are spent for this diagnosis than any other [1]. It is well recognized that approximately half of all HF patients have a preserved left ventricular ejection fraction (LVEF). Despite a normal LVEF, they have similar hospital readmission and mortality rates as patients with a reduced LVEF [2]. Over the past three decades, medical advances have improved patient outcomes in those with HF with reduced left ventricular ejection fraction (HFrEF). The same cannot be said for patients with HF with preserved left ventricular ejection fraction (HFpEF) as the prognosis of this population has remained unchanged despite the use of the same advances [2]. Few randomized control trials (RCT) have been performed in HFpEF and most with disappointing results. Past therapies and novel agents are reviewed below.

A definition of heart failure with preserved ejection fraction
HFpEF is defined by the presence of symptoms and/or signs of HF and a preserved LVEF greater than 40–50%, usually measured by echocardiography. There is no agreement on the exact LVEF that corresponds to a preserved LVEF, which varies between guidelines [1, 3–5]. In addition, one guideline recommends demonstration of an increased filling pressure, measured invasively in the coronary catheterization laboratory, by echocardiography using tissue Doppler techniques or by finding elevated brain natriuretic peptide levels on laboratory testing [5].
Regardless of the definition used, HFpEF is of growing interest, an important public health issue and a target for therapy.

Treatment of comorbidities

Hypertension

Hypertension is the most common medical comorbidity in HFpEF and is seen in up to 60% of patients [2]. Hypertension-related left ventricular hypertrophy (LVH) plays an important role in the development of HF potentially due to changes in diastolic filling parameters [6]. Regression of LVH may result in improvements in diastolic function, as demonstrated in a recent meta-analysis evaluating the differential effects of antihypertensive therapies on LVH [7]. This found that angiotensin II receptor blockers (ARB), angiotensin converting enzyme (ACE) inhibitors, calcium-channel blockers and diuretics are significantly better than β-blockers at improving LVH. Consistently, RCT of antihypertensive agents reduce the clinical endpoint of HF of which an uncertain percentage of this is related to systolic or diastolic dysfunction [8]. HF guidelines recommend control of systolic and diastolic hypertension in HFpEF and these patients should have their blood pressure managed to targets established by hypertension guidelines [1, 3–5].

Atrial fibrillation

Atrial fibrillation is the most common arrhythmia in HF and has a prevalence of 40% in HFpEF patients [2]. Selby et al [9] illustrated that tachycardia associated with atrial fibrillation can induce diastolic dysfunction associated with increased left ventricular mass, left atrial volumes, and resting tone in patients with normal LVEF. Atrial fibrillation also has prognostic value in HFpEF and was an independent predictor of HF death or hospitalization in HFpEF patients, but not in HFrEF patients [10]. While there is currently no evidence that strict rate control of atrial fibrillation is beneficial in HFpEF, it is strongly recommended by HF guidelines [1, 3–5].

Coronary artery disease

Although coronary artery disease is not as prevalent in HFpEF patients as in those with reduced LVEF, it is present in up to 50% of patients [2]. This high prevalence is probably due to the fact that HFpEF patients often have multiple risk factors for coronary artery disease such as hypertension, diabetes and older age [2]. Furthermore, myocardial ischemia can impair ventricular relaxation inducing diastolic dysfunction. Guidelines recommend consideration of coronary revascularization in HFpEF patients with symptomatic coronary disease or in those with demonstrable myocardial ischemia that is judged to be having an adverse effect on cardiac function [1, 3–5].

Medical therapy

ACE inhibitors and ARB

ACE inhibitor therapy is firmly entrenched in the treatment of HFrEF, but the same cannot be said for HFpEF. In the Perindopril in Elderly People with Chronic Heart Failure (PEP-CHF) study, 850 patients aged 70 years or older with evidence of diastolic dysfunction and a LVEF greater than 40% were randomly assigned to either perindopril or placebo [11]. Overall, no conclusion can be drawn with respect to the primary outcome (all-cause mortality and HF hospitalization) as the study was underpowered and had a high treatment withdrawal rate after 1 year. However, a secondary analysis highlights improvements in 6-minute walk time and symptoms as well as a significant reduction in cardiovascular death and HF-related hospitalization at 1 year [11].

Two major RCT have been performed looking at the use of ARB in HFpEF. In the Effects of Candesartan in Patients with Chronic Heart Failure and Preserved Left Ventricular Ejection Fraction (CHARM-P) trial, 3023 patients with New York Heart Association class II–IV symptoms and LVEF greater than 40% were assigned to receive either candesartan or placebo [12]. At a median follow up of 37 months, there was no difference in the primary outcome of cardiovascular death or HF admission, but there was an 18% reduction in the secondary endpoint of HF hospitalizations. The more recently published Irbesartan in Patients with Heart Failure and Preserved Ejection Fraction (I-PRESERVE) trial randomly assigned 4128 patients who were at least 60 years or older with New York Heart Association class II–IV HF and a LVEF of 45% or greater to irbesartan or placebo [13]. At a mean follow-up of 50 months, there was no difference in the primary outcome of death from any cause or hospitalization for cardiovascular causes, or any of the other secondary endpoints [13].

There continues to be no strong RCT data supporting the use of ACE inhibitors/ARB in HFpEF. In the
absence of other indications, guidelines weakly support ACE inhibitor therapy in HFrEF for the reduction of symptoms, and no other large RCT are planned at this time to address this indication better. Similarly, ARB may be considered in HFrEF to reduce hospitalization [4] or symptoms [1, 3], but should not be used in conjunction with ACE inhibitors.

β-Blockers

Much like ACE inhibitors and ARB, β-blockers are important in the treatment of HFrEF, but their use in HFrEF is not established. Small observational studies have shown a morbidity, symptom and mortality benefit with β-blockers in HFrEF [14, 15]. Conversely, larger registry data from OPTIMIZE-HF (4153 patients) with HFrEF showed that discharge use of β-blockers had no association with 1-year mortality or hospitalization rate [16]. In the 752 HF patients with a LVEF greater than 35% in the SENIORS trial (comparing nebivolol versus placebo), there was no statistical difference in the primary outcome of all-cause mortality or cardiovascular admission [17]. At present, there is limited RCT evidence supporting β-blockers for use in HFrEF, and assuming there is not another indication for their use, guidelines give them a weak recommendation.

Diuretics

There are no clinical trial data prospectively evaluating the overall impact of thiazide or loop diuretics on mortality in HF probably because few symptomatic patients can be managed without them. Current guidelines strongly recommend diuretic therapy to control pulmonary congestion and peripheral edema in HFrEF, with caution advised against excessive diuresis as it can lead to volume depletion with subsequent decreased cardiac output and worsening of renal function [1, 3–5].

Aldosterone blockade

Aldosterone is known to promote hypertension, ventricular hypertrophy and progressive myocardial fibrosis – all of which are implicated in the pathogenesis of HFrEF and therefore aldosterone synthesis or receptor blockade may be useful in the treatment of HFrEF. In a small RCT of patients with HFrEF, 6 months of treatment with the aldosterone receptor blocker eplerenone appeared to improve echocardiographic measures of diastolic function, but not 6-minute walk time [18]. HF guidelines do not refer to the use of aldosterone blockers in the treatment of HFrEF, but this may change as there are currently two large randomized outcome studies being carried out to explore the use of spironolactone in HFrEF. The Aldosterone Receptor Blockade in Diastolic Heart Failure–ISRCTN94726526 (ALDOS-DHF) trial has been completed, but results have yet to be released while the larger Aldosterone Antagonist Therapy for Adults with Heart Failure and Preserved Systolic Function–NCT00094302 (TOPCAT) study is expected to have results available in 2013. Their results are highly anticipated and will shed light on the clinical application of aldosterone blockers in HFrEF.

Other agents

Several other agents commonly used in HFrEF have undergone limited study in HFrEF. The DIG trial had similar results in the 988 patients with LVEF greater than 45% as it did for those with an LVEF of 45% or less, with no difference in all-cause or HF-related mortality [19]. Current guidelines either do not or only weakly recommend the use of digoxin in HFrEF, but it can be a useful adjunct for patients with atrial fibrillation.

Calcium channel blockers may improve passive diastolic filling by reducing left ventricular end-diastolic pressure. In a small RCT, verapamil improved exercise capacity and diastolic filling in HF patients with a LVEF greater than 45% [20]; however, this has yet to be corroborated and therefore some guidelines weakly recommend calcium channel blockers for the reduction of symptoms for HFrEF [1, 4] while others recommend it only if there is another indication [3].

Observational data have shown a mortality benefit for the use of statins in HFrEF and HFrEF, but no benefits were found in the GISSI-HF RCT, which included patients with HFrEF [21]. Statins are currently not recommended in HFrEF unless there is another indication.

Exercise therapy

Exercise intolerance is a primary symptom of chronic HF, a predictor of HF mortality and a key therapeutic target [22]. Studies of exercise therapy in HFrEF have shown improvements in exercise performance, and this has recently also been shown in HFrEF. In a single blind study, Kitzman et al [22] randomly assign 53 HFrEF patients to 3 days a week of medically supervised exercise therapy for 16 weeks. Measures of exercise tolerance including peak exercise oxygen uptake and 6-minute walk time increased significantly
in the therapy group compared to the control group. Another small RCT showed similar improvements in peak oxygen uptake with 3 months of exercise therapy, and also demonstrated improvements in measures of left ventricular diastolic function and left atrial size [23]. Exercise therapy that is initially supervised is recommended for all HF patients, and it may exert beneficial effects on myocardial and skeletal muscle function that are yet to be fully understood.

Novel agents

A rational approach to the treatment of HFpEF is to target regression of LVH. Animal and human studies have revealed that inhibition of phosphodiesterase-5 leads to cardiac anti hypertrophic and antifibrotic effects resulting in improved cardiomyocyte relaxation and increased left ventricular distensibility [24]. In a RCT, Guazzi et al [24] assigned 44 patients with HFpEF and pulmonary hypertension (pulmonary artery systolic pressure >40 mmHg) to placebo or sildenafil. At 6 months and 1 year, the sildenafil group had improvements in mean pulmonary artery pressure and right ventricular function, and a reduction in wedge pressure and isovolumetric relaxation time. There was, however, no difference in quality of life measures or symptoms between the two groups. The ongoing Evaluating the Effectiveness of Sildenafil at Improving Health Outcomes and Exercise Ability in People with Diastolic Heart Failure–NCT00763867 (RELAX) trial, expected to be complete in January 2013, will offer further enlightenment on the clinical use of phosphodiesterase-5 inhibitors in HFpEF.

Diastolic filling and myocardial relaxation is impaired in HFpEF and therefore heart rate slowing may improve diastolic parameters in these patients. While β-blockers and calcium channel blockers do not appear particularly useful in this population, use of the “funny” current (Ii)-channel blocking agent ivabradine may be of benefit [25]. Because there are no Ii channels in the myocardium, it selectively reduces heart rate without a negative effect on myocardial contractility or cardiac output. Trials investigating the use of this agent are ongoing in patients with HFpEF both on (NCT01373619) and off (NCT00757055) diastasis.

The increased left ventricular stiffness often seen in elderly people with HFpEF is partly due to non-enzymatic crosslinks that develop between advanced glycation end products on collagen and elastin [26]. Alagebrum chloride (ALT-711) is a novel compound that breaks these crosslinks and was associated with reduced left ventricular mass and improved diastolic filling in an open label trial of elderly HFpEF patients [27]. This compound has not been shown to be of benefit in a RCT enrolling HFrEF patients [26], but has yet to be adequately tested in patients with HFpEF.

See table « Prior, current and future trials in heart failure with preserved ejection fraction » in online-only data supplement [28-40]

Conclusion

Significant advances in understanding HFpEF have occurred in the past decade, and it is likely that there will be a treatment that reduces morbidity and mortality for these patients by the end of this decade. The heterogeneity of causal diseases, complexity of cardiac and skeletal muscle derangements, chronic metabolic and fibrosis changes and vascular dysfunction that occurs in HFpEF make this a very complex puzzle to solve. Which cellular pathway or combination of therapies will correct the underlying pathophysiology remains to be seen.

References

5. McMurray JJ, Adamopoulos S, Anker SD, et al (2012) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC Eur Heart J 33:1787–1847

17. Deswal A, Richardson P, Bozkurt B, Mann DL. (2011) Results of the Randomized Aldosterone Antagonism in Heart Failure with Preserved Ejection Fraction trial (RAAM-PEF) J Cardiac Fail 17:634–642

34. Aronow WS, Ahn C, Kronzon I (1997) Effect of propranolol versus no propranolol on total mortality plus nonfatal myocardial infarction in older patients with prior myocardial infarction, congestive heart failure, and left ventricular ejection fraction > or = 40% treated with diuretics plus angiotensin-converting enzyme inhibitors Am J Cardiol 80:207–209

